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Problems

Software evolves

How to deal with new versions?
How to deal with new library versions?
How to change the code?
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Version Control Systems

File-based

CVS
SVN
GIT/Mercurial/Bazaar



Version Control Systems

Metamodel-based

StORE (Visual Works)
Monticello 2 (Squeak)
ENVY (IBM VAST/VA Smalltalk)
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Problems

Is it OK to subclass existing class?
Is it OK modify a foreign method?
Is it OK add a method to foreign class?



Classboxes

Classboxes is a module system supporting local class
refinements.



Classboxes – Example

1 classbox greetings-cb {
2 class hello {
3 method say-hello { print ‘‘Hello!’’ }
4 method say-good-bye { print ‘‘Good bye!’’ }
5 }
6 }
7

8 classbox spanish-greetings-cb {
9 import class hello from classbox greetings-cb
10 refine class hello {
11 refine method say-hello { print ‘‘Hola!’’ }
12 }
13 }



Classboxes – Example (cont.)

14 classbox application-cb {
15 import class hello from classbox greetings-cb {
16 class app {
17 method main { hello.say-hello; hello.say-good-bye }
18 }
19

20 classbox spanish-application-cb {
21 import class app from classbox application-cb
22 import class hello classbox spanish-greetings-cb
23 }
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Hints

Many many classes
Many many methods
Be carefull with private/protected methods
Be carefull with final/sealed classes
One responsibility per class
Write libraries as set of traits, if possible :-)
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Refactoring

Changing the code without changing the functionality.

Simple examples

I Rename a parameter or temporary
I Rename the method
I Extract to method



Complex refactoring

at:ifAbsent→ at:ifAbsentPut:

1 propertyAt: key
2

3 ↑dict
4 at: key
5 ifAbsent:
6 [dict
7 at: key
8 put: nil]



Complex refactoring II

at:ifAbsent→ at:ifAbsentPut:

1 propertyAt: key
2

3 ↑dict
4 at: (self normalizeKey: key)
5 ifAbsent:
6 [|default|
7 default←self defaultValueForProperty: key.
8 dict
9 at: (self normalizeKey: key)
10 put: default]



Complex Refactoring – Method Rewriter



Changing the code
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