
Evolution

Jan Vraný

Department of Computer Science and Engineering
Czech Technical University In Prague

Faculty of Electrical Engineering

November 18, 2008

Outline

Problems

Tracking The History

Changing the code

Evolution-friendly code

Refactoring

Problems

Software evolves

How to deal with new versions?
How to deal with new library versions?
How to change the code?

Outline

Problems

Tracking The History

Changing the code

Evolution-friendly code

Refactoring

Version Control Systems

File-based

CVS
SVN
GIT/Mercurial/Bazaar

Version Control Systems

Metamodel-based

StORE (Visual Works)
Monticello 2 (Squeak)
ENVY (IBM VAST/VA Smalltalk)

Outline

Problems

Tracking The History

Changing the code

Evolution-friendly code

Refactoring

Problems

Is it OK to subclass existing class?
Is it OK modify a foreign method?
Is it OK add a method to foreign class?

Classboxes

Classboxes is a module system supporting local class
refinements.

Classboxes – Example

1 classbox greetings-cb {
2 class hello {
3 method say-hello { print ‘‘Hello!’’ }
4 method say-good-bye { print ‘‘Good bye!’’ }
5 }
6 }
7

8 classbox spanish-greetings-cb {
9 import class hello from classbox greetings-cb
10 refine class hello {
11 refine method say-hello { print ‘‘Hola!’’ }
12 }
13 }

Classboxes – Example (cont.)

14 classbox application-cb {
15 import class hello from classbox greetings-cb {
16 class app {
17 method main { hello.say-hello; hello.say-good-bye }
18 }
19

20 classbox spanish-application-cb {
21 import class app from classbox application-cb
22 import class hello classbox spanish-greetings-cb
23 }

Outline

Problems

Tracking The History

Changing the code

Evolution-friendly code

Refactoring

Hints

Many many classes
Many many methods
Be carefull with private/protected methods
Be carefull with final/sealed classes
One responsibility per class
Write libraries as set of traits, if possible :-)

Outline

Problems

Tracking The History

Changing the code

Evolution-friendly code

Refactoring

Refactoring

Changing the code without changing the functionality.

Simple examples

I Rename a parameter or temporary
I Rename the method
I Extract to method

Complex refactoring

at:ifAbsent→ at:ifAbsentPut:

1 propertyAt: key
2

3 ↑dict
4 at: key
5 ifAbsent:
6 [dict
7 at: key
8 put: nil]

Complex refactoring II

at:ifAbsent→ at:ifAbsentPut:

1 propertyAt: key
2

3 ↑dict
4 at: (self normalizeKey: key)
5 ifAbsent:
6 [|default|
7 default←self defaultValueForProperty: key.
8 dict
9 at: (self normalizeKey: key)
10 put: default]

Complex Refactoring – Method Rewriter

Changing the code

	Problems
	Tracking The History
	Changing the code
	Evolution-friendly code
	Refactoring

