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Problem

Physical memory is limited.
Thus it must be reclaimed.
How to find out which memory is no longer used and can
be (safely) reclaimed?



Terminology

mutator & collector
root-set
conservatism
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Reference Counting

Principle

A reference counter is associated with each object
When this counters decreases to zero, object is destroyed
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Mark-and-sweep

Algorithm

1. All objects are colored white
2. Marking phase: traverse all objects (starting with root set),

mark all reached objects black
3. Sweep phase: all white objects are destroyed



Copy Collector

I Separates memory into two spaces:
from-space
to-space

Algorithm

1. Traverse all objects (starting with root-set), copy each
reached object into the to-space

2. to-space becomes from-space and vice versa
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Motivation

I Pausing whole application because of garbage collection is
simply unacceptable

I Incremental approaches allow mutator and collector to be
interleaved or run in parallel.



Coordination of mutator & collector

Tricolor marking

I Objects that have been traversed are marked black
I Objects that have been traversed but that its descendant

may not have been are marked gray
I Rest are marked white

Barriers
I Write Barrier
I Read Barrier



Write Barrier

Detects mutators’ attempts to modify an object.

What makes GC life hard?
If mutator:

1. writes a pointer to a white object into the a black object
2. destroys pointer to the original object before GC sees it

Write Barrier Approaches

I snapshot-at-beggining
I incremental update



Read Barrier

When the mutator accesses an object, the object is
immediately colored gray.

Baker’s Incremental Copying
Any from-space object accesses by the mutator if first copied to
the to-space.



Implementation of Barriers

I mutator must call the GC to perform some action
I In practice, this action is relatively simple
I Thus:

I barriers can be easily inlined into the mutator’s code
I barriers can be supported/implemented directly by the

hardware
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Lifetime

Observation
Most objects live a very short time, while small percentage of
them live much longer

Idea

Segregate object by age into multiple regions
Scan regions with older objects less often.
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History Overview :-)

1978 - Baker’s Incremental Copy Collector
1983 - Generational GC
1992 - Smalltalk/X 1.0 released (generational GC)
1995 - release of Java & JVM (mark-and-sweep only)
2002 - release of Java 1.4.0 (generational GC)



Summary

I three basic GC methods:
I reference-counting
I mark & sweep
I copy collector

I incremental garbage collection, barriers
I generational garbage collection
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