
Introspection & Reflection

Jan Vraný

Department of Computer Science and Engineering
Czech Technical University In Prague

Faculty of Electrical Engineering

November 25, 2008



Outline

Problem

Garbage Collection

Incremental Garbage Collection

Generational Garbage Collectors

Summary



Problem

Physical memory is limited.
Thus it must be reclaimed.
How to find out which memory is no longer used and can
be (safely) reclaimed?



Terminology

mutator & collector
root-set
conservatism



Outline

Problem

Garbage Collection

Incremental Garbage Collection

Generational Garbage Collectors

Summary



Reference Counting

Principle

A reference counter is associated with each object
When this counters decreases to zero, object is destroyed



Reference Counting

Principle

A reference counter is associated with each object
When this counters decreases to zero, object is destroyed



Mark-and-sweep

Algorithm

1. All objects are colored white
2. Marking phase: traverse all objects (starting with root set),

mark all reached objects black
3. Sweep phase: all white objects are destroyed



Copy Collector

I Separates memory into two spaces:
from-space
to-space

Algorithm

1. Traverse all objects (starting with root-set), copy each
reached object into the to-space

2. to-space becomes from-space and vice versa



Outline

Problem

Garbage Collection

Incremental Garbage Collection

Generational Garbage Collectors

Summary



Motivation

I Pausing whole application because of garbage collection is
simply unacceptable

I Incremental approaches allow mutator and collector to be
interleaved or run in parallel.



Coordination of mutator & collector

Tricolor marking

I Objects that have been traversed are marked black
I Objects that have been traversed but that its descendant

may not have been are marked gray
I Rest are marked white

Barriers
I Write Barrier
I Read Barrier



Write Barrier

Detects mutators’ attempts to modify an object.

What makes GC life hard?
If mutator:

1. writes a pointer to a white object into the a black object
2. destroys pointer to the original object before GC sees it

Write Barrier Approaches

I snapshot-at-beggining
I incremental update



Read Barrier

When the mutator accesses an object, the object is
immediately colored gray.

Baker’s Incremental Copying
Any from-space object accesses by the mutator if first copied to
the to-space.



Implementation of Barriers

I mutator must call the GC to perform some action
I In practice, this action is relatively simple
I Thus:

I barriers can be easily inlined into the mutator’s code
I barriers can be supported/implemented directly by the

hardware



Outline

Problem

Garbage Collection

Incremental Garbage Collection

Generational Garbage Collectors

Summary



Lifetime

Observation
Most objects live a very short time, while small percentage of
them live much longer

Idea

Segregate object by age into multiple regions
Scan regions with older objects less often.



Lifetime

Observation
Most objects live a very short time, while small percentage of
them live much longer

Idea

Segregate object by age into multiple regions
Scan regions with older objects less often.



Outline

Problem

Garbage Collection

Incremental Garbage Collection

Generational Garbage Collectors

Summary



History Overview :-)

1978 - Baker’s Incremental Copy Collector
1983 - Generational GC
1992 - Smalltalk/X 1.0 released (generational GC)
1995 - release of Java & JVM (mark-and-sweep only)
2002 - release of Java 1.4.0 (generational GC)



Summary

I three basic GC methods:
I reference-counting
I mark & sweep
I copy collector

I incremental garbage collection, barriers
I generational garbage collection


	Problem
	Garbage Collection
	Incremental Garbage Collection
	Generational Garbage Collectors
	Summary

