Globální metody

Terminologie

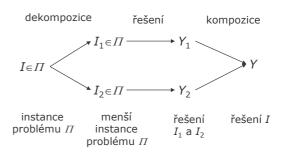
aneb co všechno je globální optimalizace

- techniky, které hledají globální optimum za přítomnosti lokálních optim
 - už jich známe spoustu
- techniky, které rovnoměrně prohledávají stavový prostor
 - náhodné starty lokálních metod
 - diverzifikace v lokálních metodách
 - atd.
- metody, které nejsou založeny na pojmu stavového prostoru

Globální a lokální metody

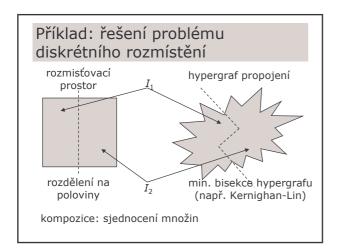
- lokální metody:
 - stav, stavový prostor
 - aktuální stav
 - okolí, prohledávání okolí
- globální metody
 - instance
 - dekompozice instance na podinstance
 - kompozice řešení podinstancí
 - rekurze
 - řešení triviálních instancí hrubou silou

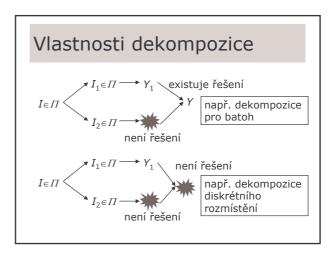
Dekompozice a kompozice



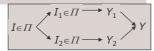
Příklad: řešení problému diskrétního rozmístění

- Dáno
 - množina n modulů $K=\{k_1,...,k_n\}$
 - množina m pozic $P = \{p_1, ..., p_m\}, m \ge n$
 - propojení modulů jako hypergraf $G\left(K,\,N\right)$, kde N je množina spojů n
 - cenová funkce W (R, n), která pro každé přiřazení $R\colon K\to P$ odhadne cenu realizace spoje n.
- Nalézt
 - prosté přiřazení $R\colon K\to P$ (rozmístění), které minimalizuje součet ohodnocení W (R, n) přes všechny spoje.



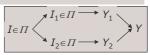


Přesná dekompozice



přesná dekompozice (proper decomposition): čistá dekompozice taková, že každé optimální řešení Y se dá složit z nějakých optimálních řešení Y_1 , Y_2 (ze všech optimálních Y_1 , Y_2 se dají složit všechny optimální Y)

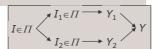
Čistá dekompozice



čistá dekompozice (pure decomposition): přibližná dekompozice taková, že

- • Y_1 , Y_2 optimální řešení I_1 , $I_2 \Rightarrow Y$ je optimální řešení I
- • Y_1 , Y_2 neexistují $\Rightarrow Y$ neexistuje

Přibližná dekompozice



přibližná dekompozice (approximate decomposition):

- $ullet Y_1,\ Y_2$ optimální řešení $I_1,\ I_2\Rightarrow Y$ je řešení I $ullet Y_1,\ Y_2$ neexistují \Rightarrow nevíme nic

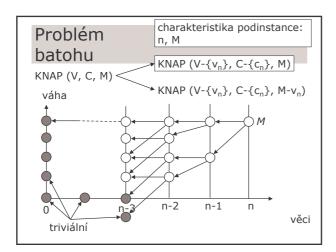
Vlastnosti globálních metod všechna pouze přesná optimální řešení dekompozice přesná a čistá alespoň jedno dekompozice optimální řešení přesná, čistá a nelze zaručit přibližná dekompozice vlastnosti řešení

Redukce

- Dekompozice taková, že jedna z dekomponovaných instancí je triviální: <u>redukce</u>
- přesná redukce
- čistá redukce
- přibližná redukce

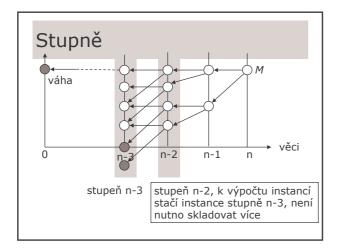
Dynamické programování

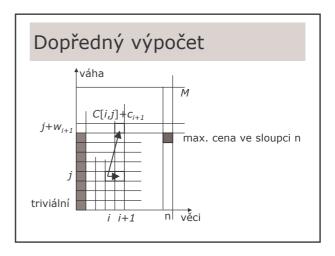
- čistá dekompozice
- dekomponované instance se dají charakterizovat malým objemem hodnot
- řešení dekomponovaných instancí se dají indexovat těmito hodnotami
- dekomponované instance se dají rozdělit do disjunktních tříd (stupňů) tak, že k výpočtu instancí jednoho stupně je třeba jen instancí právě jednoho jiného stupně



Formulace dynamického programování

- Rekurzivní:
 - vyjít ze zadané instance
 - stanovit, které podinstance je třeba řešit, až se dosáhne triviálních instancí
 - jasná souvislost s globálními metodami
 - ale v praxi se nepoužívá
- Dopředná
 - vyjít ze zadané instance
 - spočítat všechny složitější podinstance, až se dosáhne zadané instance
 - a tak se to dělá





Použití dynamického programování

- Formulovat řešení jako rekurzivní algoritmus
- Stanovit minimální charakterizaci podinstancí a organizaci paměti mezihodnot
- Tak ukázat, že podinstancí je polynomiálně mnoho
- Stanovit stupně a pořadí řešení tak, aby všechny mezihodnoty byly k dispozici

Co může být výhodné řešit dynamickým programováním

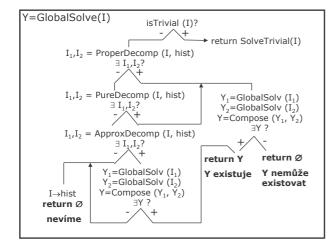
- Problémy, které mají omezený počet mezihodnot
 - n! permutací měst TSP, ale
 - n(n-1)/2 souvislých podřetězů řetězu, určených počátkem a koncem
 - n(n-1)/2 podstromů binárního vyhledávacího stromu, určených minimálním a maximálním klíčem
- Problémy s přirozeným uspořádáním prvků

Rozděl a panuj

- Algoritmy založené na <u>přibližné</u> <u>dekompozici</u>
- Opakované řešení dekomponovaných instancí je řídké
- Zvláštní případ: je potřeba řešit jen jednu z dekomponovaných instancí -<u>zmenši a panuj</u> (např. binární hledání), někdy jen použití přibližné redukce

Globální metody, složené z různých dekompozic

- Princip: rekurzivní procedura
- V každé úrovni se použije nejlepší možná dekompozice (přesná, čistá, přibližná)
- Možné výsledky:
 - nalezeno řešení
 - řešení neexistuje
 - nevíme nic
- Tam, kde je možno provést více dekompozic stejného druhu, udržujeme seznam těch, které nevedly k výsledku

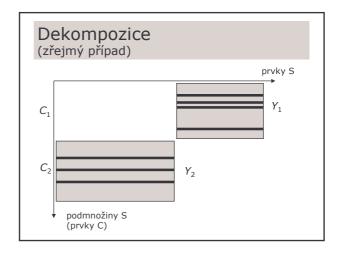


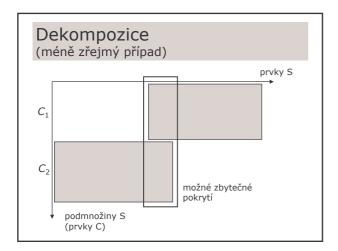
Problém pokrytí

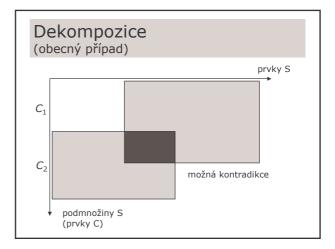
- Dáno: I=(C,S) kolekce C podmnožin konečné množiny S.
- Zkonstruovat:
 - podmnožinu Y⊆ C takovou, že každý prvek S patří do <u>alespoň</u> jedné podmnožiny z Y, a dále |Y| = min. (unátní pokrytí)
 - podmnožinu $Y \subseteq C$ takovou, že každý prvek S patří do <u>právě</u> jedné podmnožiny z Y, a dále $|Y| = \min$. (binátní pokrytí)

Dekompozice

- $C = C_1 \cup C_2$, nikoliv nutně disjunktní
- dekompozice C indukuje instance $I_1{=}(C_1,\,S_1)$ $I_2 = (C_2, S_2)$
- $Y_1 \cap C_2 = Y_2 \cap C_1 \Rightarrow Y = Y_1 \cup Y_2$ je řešení I.
- $Y_1 \cap C_2 = Y_2 \cap C_1$ a Y_1 , Y_2 jsou jediná min. řešení ⇒ dekompozice je přibližná.
- $Y_1 \cap Y_2 = C_2 \cap C_1$ a Y_1 , Y_2 jsou jediná min. řešení ⇒ dekompozice je přesná.







Redukce: sloupcová dominance

- prvek $s \in S$ je obsažen pouze v množině $c \in C \Rightarrow c \in Y$
 - dekompozice na I_1 =({c},{s}) a zbytek I_2 instance

 - III. i je triviální, $Y_1 = \{c\}$ c musí být v každém, tedy i optimálním řešení všechna opt. řešení I dostaneme složením všech opt. řešení I2 a {c}
- sloupcová dominance je přesná redukce

Redukce: rádková dominance

- množina $c_1 \in C$ je podmnožinou $c_2 \in C \Rightarrow$
 - 1. Nechť Y_{opt} je optimální řešení, nechť $c_2 \in Y_{\text{opt}}$. Pak $c_1 \not\in Y_{\text{opt}}$, neboť je zbytečná.
 - 2. Nechť Y_{opt} je optimální řešení, nechť $c_2 \not\in Y_{\text{opt}}$. Pak je buď

 - c₁∉Y₀pt
 c₁∈Y₀pt; pak se dá nahradit množinou c₂
 (optimalizační kritérium |C| se nezmění); nedostaneme všechna optimální řešení
- řádková dominance je čistá redukce